Дифференциальное уравнение 1-го порядка P(x;y)dx+Q(x;y)dy=0 называется однородным, если P(x;y) и Q(x;y) — однородные функции одинакового измерения, то есть
Как определить, что дифференциальное уравнение — однородное? На практике проверку уравнения на однородность проводят следующим образом: вместо каждого x подставляют λx, вместо каждого y — λy. При этом y’, dx и dy не трогают. После этого упрощают уравнение. Если после упрощения удается сократить на λ (или n- ю степень λ) и получить исходное уравнение, то это и означает, что данное уравнение является однородным уравнением 1-го порядка.
Другая форма записи: y’=f(x;y). Это уравнение является однородным, если функция f(x;y) является однородной функцией нулевого порядка. Это означает, что f(λx;λy)=f(x;y).
Примеры.
Подставляем вместо каждого x λx, вместо каждого y — λy:
Выносим лямбда в квадрате за скобки и сокращаем на него:
Пришли к исходному уравнению, а это значит, что данное уравнение — однородное.
2) (x-y)ydx-x²dy=0.
Подставляем вместо каждого x λx, вместо каждого y — λy: (λx-λy)λydx-(λx)²dy=0. Теперь выносим общий множитель λ² за скобки: λ²((x-y)ydx-x²dy)=0. Делим обе части уравнения на λ²:
(x-y)ydx-x²dy=0. Пришли к исходному уравнению, значит, это уравнение — однородное. (Здесь P(x;y) и Q(x;y) — однородные функции 2й степени).
Наличие дроби y/x уже косвенно указывает на то, что уравнение может быть однородным. Проверим, так ли это:
После сокращения на λ получаем исходное уравнение:
а это значит, что данное уравнение является однородным.
4)
Подставляем вместо каждого x λx, вместо каждого y — λy:
Делим обе части уравнения на лямбда в 4й степени:
Получили исходное уравнение, а значит, оно является однородным. (Здесь P(x;y) и Q(x;y) — однородные функции 4й степени).
Теперь рассмотрим, как решать однородные дифференциальные уравнения 1го порядка.